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According to Miles’ theory of wind-wave generation, water waves grow if the curvature 
of the wind profile at  the critical height is negative. As a result, the wind profile changes 
in time owing to the transfer of energy to the w&ves. In  the quasilinear approximation 
(where the interaction of the waves with one another is neglected) equations for the 
coupled air-water system are obtained by means of a multiple-time-scale analysis. 
In this way the validity of Miles’ calculations is extended, thereby allowing a study 
of the large-time behaviour. 

While the water waves grow owing to the energy transfer from the air flow, the 
waves in turn modify the flow in such a way that for large times the curvature of the 
velocity profile vanishes. The amplitude of the waves is then limited because the 
energy transfer is quenched. 
In the high-frequency range the asymptotic wave spectrum is given by a ‘ - 4’ 

law in the frequency domain rather than the ‘classical’ ‘ - 5’ law. 

1. Introduction 
A possible mechanism for the generation of water waves by the wind is resonant 

interaction of the gravity waves with a plane-parallel flow (Miles 1957). Resonance 
occurs at  a critical height zc if U(zc)  = C(u), where U is the air velocity and C(a)  is 
the phase velocity of a wave with frequency a. Only those waves grow for which the 
curvature of the velocity profile at the critical height is negative. This type of inter- 
action has also been studied in other fields of physics. Some time ago Landau (1946) 
investigated the linear interaction of plasma waves with particles: the rate of change 
of the energy of the plasma waves is proportional to the derivative of the particle- 
velocity distribution function at the point of resonance (cf. Fabrikant 1976). For a 
plane-parallel flow this change of energy is proportional to the curvature of the 
velocity profile at  the critical height. Also, in a plane-parallel flow near the point of 
resonance a pattern of closed streamlines is found, similar to Kelvin’s ‘cat’s-eye’ 
pattern, and the same feature occurs in the phase-space orbits of trapped particles in 
a given monochromatic plasma wave. 

The linear theories of resonant interaction of gravity waves with a flow and plasma 
waves with particles are only valid on a short time scale, since in the course of time 
nonlinear effects may become important owing to the growth of the waves. Nonlinear 
effects on the interaction of plasma waves and particles have been studied by Vedenov, 
Velikhov & Sagdeev (1961) and Drummond & Pines (1962). One of the main results 
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of these investigations was that plasma waves modify the particle distribution 
function, which leads eventually to saturation of the plasma waves. Davidson (1972) 
extended these results to include three-wave interactions and nonlinear wave- 
particle interactions. The plasma waves were assumed to have a sufficiently broad 
spectrum such that the random phase approximation is valid. The random-phase 
approximation or quaai-normal approach was also assumed to be valid by Hasselmann 
(1967) in his study of, for example, wave-wave interactions of water waves. 

In this paper we are concerned with the effects of the water waves on the air flow. 
By means of the multiple-time-scale method we derive dynamic equations for the 
slowly varying energy density of the water waves and the wind velocity U (J 2). The 
growth of the water waves due to atmospheric input occurs on a long time scale since 
this energy transfer is proportional to the ratio of air density to water density. Hence, 
we have at  least two time scales, namely one related to the relatively rapid water 
oscillations and one of the order of the energy transfer time from air to the water 
waves. Another reason for the use of the multiple-time-scale method is that an iterative 
solution of a set of nonlinear equations (in this case the Euler equations plus boundary 
conditions) usually gives rise to secular terms in time. The introduction of different 
time scales then provides freedom to prevent secularity. The condition resulting from 
the elimination of secularity gives the equations for the slow time dependence of the 
wave energy and the air speed. 

We confine ourselves to a discussion of the quasilinear approximation, i.e. the effect 
of (four) wave-wave interactions and energy dissipation due to wave breaking on the 
evolution of the energy density is neglected. 

In  addition, the effect of air turbulence on the velocity profile is neglected. Although 
these approximations are probably not justified, the purpose of this paper is to discuss 
the coupling of waves and wind only in order to see what typical features for such a 
system may be found. 

Section 3 is devoted to the study of some exact consequences of the quasilinear 
theory of wind-generated water waves. The coupled air-water system tends to an 
asymptotic equilibrium for which the wind profile becomes linear, corresponding to a 
frequency spectrum that shows dependence on frequency in the high-frequency 
range. Phillips (1958), on the other hand, obtained an f -5 law on dimensional grounds. 
We must note however, that the f -4 law stems from a different physical mechanism. 
While the f-5 law is based on the balance of energy input from the ah, transfer of 
energy due to nonlinear interaction and dissipation of energy through wave-breaking 
(Hamelmann 1974), the f -4 law is based on quenching of energy input from the air 
because the wind profile is affected by the water waves. 

2. Quasilinear equations for wind-generated water waves 
It is the purpose of this section to obtain a closed set of quasilinear equations 

for wind-generated water waves. These equations describe the energy transfer 
from a two-dimensional parallel shear flow in an inviscid incompressible fluid (air) 
to the water waves and reversely the effect of the water waves on the air flow. 

Turbulent stresses will be neglected in this treatment, although their effect on the 
generation of water waves will be discussed at the end of this section. 



Spectrum of wind-generated water waves 495 

The basic equations for air and water then read 

I a 
at Pa 

air v.u = 0, -u = - 2 + g  (2 > r](z,t)); 

2 + g  (z  < q ( x , t ) ) ;  
a 
zu=- P w  

water V.u = 0, 

where z = r](x,t) is the equation for the interface between air and water, u is the 
velocity, p the density, p the pressure, g the acceleration due to gravity and 

a p t  = a/at + u . v. 
The subscripts a and w denote air and water respectively. 

The interface motion is defined by (kinematic condition) 

where u and w are the x- and z-components of the velocity U. 
The boundary condition on the interface reads 

p a  = pw, z = ~ ( x , t ) .  (3) 

The water motion is assumed to be irrotational. For simplicity the water depth is 
infinite so that w( - 00) = 0. Miles (1957), using the set of equations (1)-(3), has investi- 
gated the linear stability of the following equilibrium state: 

a 
pa = const., u0 = U0(z)Q,, Gpao = -pag 

pw = const., uo = 0, %pw0 = -pwg ( z  < 0); 

( Z  > 0); 

a (4) 

where Qz is a unit vector in the x-direction. 
For perturbations that propagate in the s-direction and vanish for 1.1 -f 00, the 

principal result Miles found was that there is energy transfer from the air flow to the 
water waves if the curvature of the velocity profile at that point in the profile where 
the air speed is equal to the wave speed is negative. 

Miles’ treatment is, however, only valid on a short time scale, since in the course of 
time nonlinear effects may become important owing to the growth of the water waves. 
The energy transfer from the air to the water waves gives rise, for example, to a modi- 
fication of the velocity profile which in turn affects the growth of the water waves, 
possibly quenching the instability. 

In  this paper we are primarily interested in the effect of the water waves on the air 
flow. In addition, we are concerned with a statistical description of the interaction 
of water waves and air, i.e. we consider the evolution in time of ensemble-averages of 
quantities like the energy density. To this end the nonlinear set of equations (1)-(3) 
is solved iteratively by means of a systematic expansion of the relevant quantities in 
powers of a small parameter. Finally, the appropriate averages are taken to obtain 
equations for the averaged quantities. Thus, we consider a weakly nonlinear system 
for which the random-phase approximation is assumed to be valid (Hasselmann 1967; 
Davidson 1972). 
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The small parameter in the expansion of quantities like energy density is taken to  
be the ratio of air density to water density. The argument for this choice is as follows. 
From Stewart (1967), where i t  is observed that a substantial amount  of energy is 
contained in the water waves, it may be inferred that 

pw(w2) = O(pa u,"). ( 5 )  

Here, the angle brackets denote ensemble average, and U, is the mean air speed. 
Consequently, (w2) = 0 ( c 2 l 7 ) ,  where e2 is given by 

(6) e2 = pa/p w . 
It is therefore tempting to expand the elevation, the velocity and the pressure in 
powers of e .  Thus 

We remark that the series for the air pressure starts with a term O(e2) since 

p a  = O(pauE). 

A straightforward iterative solution of a set of equations may, however, give rise 
to  secular terms (in time, for example) in the series solution (Davidson 1972). E'or this 
reason we intmduce different time scales such that there is sufficient freedom to  prevent 
secularity. To that end it is sufficient to assume that averaged quantities, such as 
(ws), depend on T~ = t ,  7 2  = e2t, ... (cf. Davidson 1972). Hence, for example, 

The T~ scale takes account of the relatively rapid wave oscillations, while growth of 
the waves due to atmospheric input occurs on the 72 scale, since this energy input is 
proportional to €2 = pa/pw (Miles 1957). It is the condition resulting from the elimi- 
nation of secular behaviour on the short time scale T,, which gives us the slow time 
dependence of the wave energy density and the mean air speed U. 

In $2.1 we discuss the iterative solution of the set of nonlinear equations for water, 
whereas the equations for air are treated in Q 2.2. 

2.1. Iterative solution for water waves 

Since the water motion is irrotational a velocity potential 4 is introduced according to 

u = vq5, (9) 

Aq5 = 0, (10) 

hence from incompressibility we obtain the potential equation 

where A = a2/8z2 + a2/8x2. With the boundary condition # + 0, z + - 00, the solution 
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By means of (1 1) and (12) we obtain from (1)-(3) the following equation for the Fourier 
transform of r ]  : 

where a2 = glkl and NL represents all the nonlinear terms (these are O(e2)). Using the 
series given in (7) and the multiple-time scale expansion (8 ) ,  we obtain to lowest order 
in 6 

i.e. on the time scale 70 we deal with free waves in the absence of air. One may proceed 
in this fashion to  obtain the effect of the nonlinearities and the atmospheric input on 
the evolution in time of Ql. See for this e.g. Hasselmann (1967), who has obtained the 
equation for the slow time evolution of the energy density P(k) ,  which is normalized 
according to 

I F ( k ) d k  = pwg(q2) = 8. (15) 

Here, B is the wave energy, and the brackets denote an ensemble average. To that end 
we write 

P(k) = s2F2 + e4P4 + . . . . 
The slow time dependence of F2 to order e4 is then given by 

) -F2 a72 = -5(9:,lGQl+c.c. , 
a 1 a 

where the asterisks and C.C. denote complex conjugation. 
Equation (16) results from the requirement that there be no secularity in F4 on the 

70 scale. Three-wave interactions do not contribute to the slow time evolution of F2 
because for gravity waves they are not resonant. Resonant four-wave interactions are 
O(k). Their effect may still be important if the atmospheric input term is numerically 
small. We return to this matter at the end of this section. 

According to (16) the energy density F2 changes in time owing to linear effects only. 
For this reason the term quatilinear approximation is used (Drummond & Pines 
1962; Bernstein & Engelmann 1966; Davidson 1972). 

In  $2.2 the pressure input term will be determined. We note in advance that we 
are especially interested in the r2 dependence of this energy transfer. 

2.2. Treatment of the equations for air 
Since we do not allow for damping of both waves and turbulence, the dynamical 
equations for air read 

and for simplicity we write 
u a  = U + h ,  p a  = Po+Spa, 

where Su and Spa represent the fluctuating part of the series given in (7) (hence 
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(h) = (Spa) = 0), while U and Po denote the steady-state part. By means Of (18) 
we obtain from (17) an equation for U and for the fluctuation Su 

a a l a  
at p axa Pa ax/ -u  +-(SuaSu/) = - - - ( P , > + g g ,  ( 1 9 4  

(19b) 
a a i a  a 
-6u +-(UaSup+8uaUp) = --- Spa + - Tap, 
at 1 axa Paaxp axa 

where Tap = 6ua6up-(8uaSup). Here, the subscripts a and fl  denote the various 
components of the vector quantities U, Su and g, and the summation convention is 
assumed. Finally, 

(20) 
a 

-8% = 0. 
axa 

Elimination of the pressure fluctuation Spa from (19) and (20) gives an equation for 
the vertical component of SU : 

where the prime denotes differentiation with respect to z. In  obtaining (21) we have 
assumed that U points in the 2-direction and is a function oft and z only. 

We restrict our attention to the set (19a), (20) and (21). Equation (19a) describes 
the rate of change of the steady-state velocity U due to the wave-induced stresses 
(SuaSup). To calculate (Sua8up) we need to solve (21). This may be done iteratively 
because 8w is assumed to be small. 

In  agreement with (7) we expand (8uaSup) in powers of c2, 

(8ua8up) = e2(6~,8~,9)2 + . . . , 

u = uo+s2u2+ ... . 

(22) 

(23) 

Substitution of (€9, (22) and (23) in the x-component of (19a) then gives the hierarchy 
of equations 

while we also expand U according to 

The first equation of (24) tells us that U, is independent of T ~ .  Integration of the 
second equation of (24) with respect to time gives 

where, as will be shown, (Su,Su), is independent of 7,. In  order to avoid secularity in 
U2 on the 70 scale we require the vanishing of the right-hand side of (25): 

resulting in an equation for the T~ dependence of U,. Although this result may seem 
trivial (cf. (19a)), it is not. To obtain the T~ dependence of Uo we only need the wave- 
induced stress to lowest significant order. 
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To calculate (SU,SU)~ we solve (21). To lowest order we find 

a (& + Uo &) ASw, = U," - ax Sw,, (27) 

i.e. Sw, satisfies the well-known Rayleigh equation. 
The boundary conditions for Sw, follow from the requirements that the interface 

shall remain a streamline and that the fluctuation Sw vanishes at infinity. To lowest 
order we therefore obtain 

(28) 

By means of the lowest-order solution found in $2.1 the first boundary condition 

a 
az 

8w1(z = 0 )  = - + ( O ) ;  SW, 4 0 as z + 00. 

is given by 

Apparently, the air at z = 0 is forced to oscillate in the manner prescribed by (29). 
As suggested by this boundary condition we therefore try the solution 

to obtain the following problem for xl :  
(WA- W")x1=  0 ;  xl(0) = 1, xl(w) = 0 ;  (31) 

where W = u- kU,, and A = a2/az2 - k2. Since u and k as well &s U, are positive, 
resonance of the wave with the air flow is possible only for the X,-component of 8 ~ 1 .  
From now on, we therefore omit the contributions of the waves propagating to the 
left, and we drop the subscript 1. 

From incompressibility we have 

to obtain 

Now, 
a a 

-(BU,SU), = - (SUSW),, 8% az 

since a ( W ) , / a x  = 0 ;  hence (26) may be written as 

Finally, the term between brackets may be evaluated by means of the Rayleigh 
equation (31) fo obtain one of our main results 
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where S( W) is a delta-function. Performing the integration over k, we obtain an equa- 
tion of the diffusion type: 

Here we introduced the energy density E2(a ,  72)  according to 

I d k  F2(k, 7 2 )  = I E2(a, 7 2 )  da-  (36) 
Equation (35) tells us that the air flow at a certain height z changes with time owing 

to resonant interaction of a water wave with frequency u = g/U,(z).  Hence, in this 
fashion there is possibly an energy transfer from the air flow U, to the water waves, 
thus giving a rate of change of the spectrum E,  (cf. (16)) 

Using the z-component of (19b), we can write the air-pressure fluctuation as 

#a,1 = - i p w I w d z  wa(z = 0 ) ;  
0 

hence, with = - &j1 x we obtain 
(37) 

-4 a = - P w ~ q l ~ ~ [ i ~ o w d z  u3 wx+c.c.]. 
a 7 2  9 

Then, by means of the Rayleigh equation (31) we obtain the well-known result (Miles 
1957) 

where the subscript c refers to evaluation at the critical height (U, = g/a). 

the generation of water waves by the wind: 
To summarize our results, we obtain the following set of quasilinear equations for 

WAX = W”x, ~ ( 0 )  = 1, ~ ( c o )  = 0, 

where we have returned to the original variables (t  = 72/c2, E = “BE,). 
From the first equation of (39) we obtain the well-known result that only those 

waves are unstable for which the curvature U i  of the wind profile at the critical height 
is negative (this is, for example, the case for alogarithmic velocity profile). The growth 
rate of the waves is, however, a function of time, as the wind profile depends on time 
according to the diffusion equation for U,, possibly quenching the instability for large 
t .  This topic will be discussed in more detail in 5 3. 

It should be noted that Lighthill (i962), who discussed the physical interpretation 
of Miles’ theory of wave generation by the wind, obtained a similar result regarding 
the effect of a single wave on the wind profile. He did not realize however that the 
wind profile U, may be a slowly varying function of time. 
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In addition, Fabrikant (1976) obtained a similar set of quasilinear equations, 
although along different lines. Here we once again emphasize that, by means of the 
multiple-time-scale technique, equations for the slowly varying quantities P and U, 
are obtained from the requirement that there be no secularity of the second-order 
quantities (e.g. U,) on the time scale 7,. This renders the series solution, given in (7), 
uniformly valid up to t = O(s-a). 

Finally, two objections may be raised against the validity of the quasilinear theory 
of wind-generated water waves. The first objection is related to the effect of turbulent 
Reynolds stresses on the growth of the water waves and on the wind profile. Including 
the turbulence of the air flow one arrives at  the following diffusion equation for U,: 

a as a a 
at aza 0 az - uo = D w - u  +#z)  -uo, 

where D, is the diffusion coefficient related to the effect of the water waves on the air 
flow (in the absence of turbulence it is given by D in (39)), while A(z)  is the eddy 
viscosity of the air. 

Clearly, air turbulence may give rise to a broadening of the critical layer (my, the 
&-function in (34) is replaced by its Lorentzian counterpart) giving a smoothing of 
the effect of the water waves on the wind profile. 

Also, the effect of eddy viscosity (i.e. the second term on the right-hand side of (40)) 
is clear. If no water waves are present the well-known logarithmic wind profile is 
obtained in the steady state (since A = az). 

In the presence of water waves the eddy-viscosity term is capable of maintaining 
this logarithmic wind profile if D, 4 A. At later stages of the wave growth, however, 
the effect of the waves on the wind profile may overcome eddy viscosity, especially 
in the layer just above the water waves. 

The second objection concerna the effect of resonant four-wave interactions and 
dissipation on the evolution in time of the spectrum. In the derivation of the quasi- 
linear set of equations (39) it was assumed that the growth rate of the gravity waves 
due to the wind was O(e2). Numerically, however, the growth rates are quite small, 
because, for example, the curvature in the wind profile is small. Therefore, in general, 
four-wave interactions and dissipation are important processes, which should also be 
taken in account (Hasselmann 1978). 

Thus, our model (39) is not really realistic, and its results can only be compared 
with controlled experiments in wind-wave tunnels, where particular sets of conditions 
can be produced in isolation. We add to this, that it is our only purpose to investigate 
some properties of the coupled wind-wave system. 

3. Some exact consequences of the quasilinear equations 
Let us investigate some properties of the quasilinear theory of wind wave generation. 

First of all we question whether the set of equations (39) admits a steady state. To 
that end we derive an equation for the enstrophy. We differentiate the diffusion equa- 
tion for U, with respect to x to obtain 
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We next multiply (41) by aUo/az and integrate over z with the result 
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For the boundary conditions 

a2 a2 
- U ( O )  = 0, -U(m) = 0 
a22 O a22 O 

the perfect, derivative on the right above integrates to zero, hence 

This equation states that the time derivative of the enstrophy, which is bounded from 
below by zero, is non-positive. Hence, the system tends towards a condition where 
the right-hand side vanishes, which requires in the region where D + 0 that 

(43) 
a2  
- U = O  as t + m .  a 9  O 

Thus, for large times the wind profile becomes linear, implying that according to (39) 
the growth rate of the waves vanishes. Apparently, quasilinear theory predicts a 
limitation of the amplitude of the initial unstable water waves for large times, i.e. 
the energy transfer from the air flow to the water waves is quenched. 

In  the following we concentrate on the asymptotic form of the spectrum of gravity 
waves. We should &st note however that the set of quasilinear equations (39) admits 
an infinite set of balance equations, notably 

where f (Uo)  is an arbitrary function of Uo (such that the integrals exist), the prime 
denotes differentiation with respect to U,, and in the second term of the left-hand side 

Equation (44) may be obtained by multiplication of the diffusion equation for Uo 
uo = g / a .  

byf’(Uo); then integration with respect to z gives 

In the integral on the right-hand side we next convert to an integration over u via 
V, = g/u ,  then using the expression for D and the evolution equation for the spectrum 
Ewe  finally arrive at the conservation law (44). 

By an appropriate choice off’( Uo) we are able to express all moments of the spectrum 
E in terms of an integral off(  U,) in z-space (provided of course the integrals exist). 
In  particular, we obtain forf‘(Uo) = 1, conservation of momentum, 
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C C m x  

uo - 
FIGURE 1. Initial and asymptotio forms of the wind prof% 

and for f’( U,) = U, conservation of mechanical energy, 

[ 1; $pa. Lq dz + 2so” E( a, t )  da] = 0. 

From these conservation laws we see once more that for growing waves the wind 
profile changes in time. 

Another important feature of the quadinear theory is that the critical height zC is 
a function of time, aa may be inferred from figure 1. The critical height zc is obtained 
from the condition 

(46) 

It is of interest to calculate axc/&. We therefore differentiate (46) with respect to 

Uo(zc,t) = c = g/a. 

time, keeping a fixed, to obtain 

Eliminating aUoC/at via the diffusion equation for U, and using the evolution equation 
for the spectrum the result is - 

28 a E,  a - z c  = -- 
at Pa gB at 

which gives for large t the important relation 

(47) 

Equation (48) expresses the asymptotic form of the spectrum in terms of its initial 
value and the change in the critical height. 

We finally evaluate the asymptotic spectrum E(o0) for a logarithmic velocity profile 
at t = 0, 
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-I 1 - 3 

OlO,in 

FIGURE 2. The spectrum E(u ,  00) as a function of u/umln for u* = 5 ~ , , ~ .  

where u* is the friction velocity, K is the von Khrmhn constant, zo = V / K U * ,  and Y is 
the kinematic viscosity of the air. In  addition, we assume that for z > Zmax the curva- 
ture of the velocity profile is so small that only water waves with phase velocities 
c < Cmax (where Cmax = Uo(Zmax, 0)) are excited. Hence, we have a spectrum of water 
waves for a m l n  < < 00, where a m i n  = g/cmax.  

From Uo(zc, 0) = g / a  one now easily obtains zc(0) .  
On the other hand, for large t we have, according to (43), a linear velocity profile for 

uo Cmax: 
uo(z, m) = CmaxZ/Zmax (uo < cmax). 

From the resonance condition Uo = g/a the expression for zc(m) is obtained. 
Assuming that at t = 0 the energy of the water waves is small (E(0 )  = 0), the final 
result is the asymptotic spectrum E(oo), given by 

where a* = Kg/u, (usually, b m i n  @ a*). We note that E (a, co) is zero for a = a m i n ,  

in agreement with the observation that the critical height corresponding to  this 
frequency for t 3 00 equals the critical height at t = 0. We have checked that the 
solution (49) satisfies conservation of momentum and energy (cf. (45a, b)). The form 
of the spectrum B(a, a) is given in figure 2. 

Since usually a, B a m i n  the spectrum increases rapidly until the peak value at 
u = vP is reached, followed by a decrease of the spectrum according to 

E ( ~ , w )  N & ~ a g ~ ~ m a x a m i n a - ~  (a > a p ) .  (50)  

Hence, according to quasilinear theory the high-frequency part of the spectrum 
drops like a-4. It is of interest to notice that Mitsuyasu et al. (1980) recently found 
that a a - 4  power law fits quite well to the high-frequency part of their observed 
spectra. This power law was proposed by Toba (1973, 1978). Unfortunately, however, 
the present theory cannot be regarded as a justification for Toba's proposal because 
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a number of important effects have not been taken into account. These are e.g. the 
effect of nonlinear wave interactions and the effect of turbulence on the wind profile. 

Phillips (1958) obtained by a dimensional argument a r - 5  power law for the so- 
called saturation range. In  his dimensional analysis, however, only the frequency u 
and the gravity constant g were assumed to be the relevant parameters for the spec- 
trum. On the other hand, in our treatment a ‘velocity’ zmaxgmln is a relevant para- 
meter too. While the rS power law is based on the limiting wave form, that is on the 
occurrence of sharp wave orests, the u - ~  power law as obtained from quasilinear theory 
is based on a different physical mechanism. The amplitude of the water waves is 
limited because the water waves modify the wind profile in such a way that eventually 
there is no energy transfer from the air flow to the waves. 

We mention finally that quasilinear theory predicts that the momentum flux T~ due 
to  the interaction between the wave perturbations and the mean-velocity profile 
vanishes for large times or large dimensionless fetch. This is because for large times 
a2Uo/az2+ 0 and from (39) T~ = IdzDPU0/az2. Snyder et al. (1981) found that the 
ratio T ~ / T  of wave-supported to total momentum flux was a strong inverse function 
of dimensionless fetch. However, they were unable to estimate T~ directly. Thus, 
there is no hard evidence from this field experiment which supports the present theory. 

4. Summary of conclusions 
In this paper we have studied the generation of water waves by wind. While the 

water waves grow owing to energy transfer from the air flow (if its curvature is nega- 
tive), the waves in turn modify the flow in such a way that the velocity profile becomes 
linear for large times. In  the framework of quasilinear theory the waves then do not 
grow any more because the energy transfer is quenched. We have also presented some 
exact consequences of the quasilinear theory. We have discussed especially the exact 
asymptotic frequency spectrum. In the high-frequency range a power law is 
obtained. 

Experimental evidence for the effects described in this paper is hard to find. In  
field experiments not only the above-mentioned relaxation to equilibrium due to  the 
interaction between water waves and wind may be relevant. Other effects, such as 
energy transfer due to four-wave interactions and wave dissipation are bound to  
affect the shape of a real wave spectrum too (Hasselmann et al. 1973). In  addition, the 
effect of turbulence on the wind profile also has to be taken into account. Therefore, 
the best comparisons should be against laboratory work, where specific effects may be 
isolated. To our knowledge, measurements of the velocity profile below the critical 
height are not available, since the measurement problem is far from simple. 

The only point we wish to make is, however, that, besides nonlinear interactions 
and wave dissipation, the effect of the waves on the wind profile may be important 
too in the evolution of the wave spectrum. 

The author is pleased to acknowledge useful discussions with G. J. Komen and 
H. Tennekes. He thanks the referee for critical comments that improved the paper 
considerably. 
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